Beer Birthday: Pete Reid

Today is Pete Reid’s 53rd birthday. Pete is the publisher of Modern Brewery Age. I first met Pete a number of years ago at a Craft Brewers Conference but finally got to know him much better during a trip to Bavaria a few years back, where the two of us took a side trip to Salzburg to visit the Austrian Trumer Brauerei. Join me in wishing Pete a very happy birthday.

At the Zotler Brauerei in Germany.

At the Bavarian Hop Museum, that’s Pete in the back row in the baseball cap.

Pete, me and Chris Rice, from All About Beer magazine, during a trip to Belgium last year.

Peter Reid, with Gary Ettelman, of Ettelman & Hochheiser at the NBWA convention in 2008.

Toasting with Horst Dornbusch at the Bamberg Brewing Museum.

Patent No. 2253883A: Beverage Dispensing Display Bar

Today in 1941, US Patent 2253883 A was issued, an invention of Valentine Beecher, for his “Beverage Dispensing Display Bar.” There’s no Abstract, although in the description it includes these claims:

The main object of the invention is to provide a beer dispensing system in which a transparent, insulated dispensing riser extends directly from a beer keg in a pre-cooling chamber through a bar or counter provided with transparent windows through which the riser and its contents may be seen at all times.

Another object of the invention is to provide a transparent dispensing riser of the character referred to constructed in the manner of the well known Thermos or vacuum bottle to maintain the temperature of the beer’being dispensed during its passage from kegs in the pre-cooling chamber to a dispensing faucet mounted on the bar or counter, and thereby eliminate the cooling coils, air ducts and ice chambers heretofore used for this purpose.


Beer Birthday: Pete Slosberg

Today is my good friend Pete Slosberg’s 66th birthday. Pete is, of course, best known for Pete’s Wicked Ales. After that he toyed with the idea of making barbecue but decided instead to make some incredible chocolates and had a small company, Cocoa Pete’s. A few years ago, I traveled to South America with Pete (where we took to calling him “El Pete“), where we both spoke and judged beer at a beer conference/competition in Argentina, the South Beer Cup, and then flew to Brazil to attend a pair of beer dinners Stephen Beaumont was hosting and for a while he was working on Mavericks, a newish line of canned session beers, along with Half Moon Bay Brewing, Pete and his wife Amy are just doing a lot of traveling and looking for the next adventure … or sour beer. Join me wishing Pete a very happy birthday!

This was taken the first time I met Pete, over fifteen years ago at the KQED Beer and Food Festival in San Francisco, when I was more or less still a civilian. It was after I’d written a book on beer, but before I started working as the beer buyer for BevMo.

Pete & Amy Slosberg with Shaun O'Sullivan
Pete with his wife Amy and Shaun O’Sullivan, from 21st Amendment, at one of Sean Paxton’s beer dinners during SF Beer Week earlier this year.

Pete Slosberg, helping out for the day, shows off a finished bottle
Working the bottling line at Russian River Brewing, with a bottle of Consecration.

Matt Bonney, Stephen Beaumont, Sean Paxton, Pete Slosberg & Rick Sellers
Matt Bonney, from Brouwer’s, Stephen Beaumont, Sean Paxton, Pete and Rick Sellers, from Odonata at the Bistro Double IPA Festival.

Pete with his wife Amy and Celebrator publisher Tom Dalldorf at one of Bruce Paton’s beer dinners at the Cathedral Hill Hotel in February 2006.

Martin Boan, who organized and ran the South Beer Cup, with Pete in Buenos Aires.

Pete, with Edu Passarelli (owner of Melograno), Stephen Beaumont and me after a beer dinner at Edu’s place in Sao Paulo.

Patent No. 2253940A: Brew Cooling Equipment

Today in 1941, US Patent 2253940 A was issued, an invention of Gerald D. Peet, for his “Brew Cooling Equipment.” There’s no Abstract, although in the description it includes these claims:

The present invention is concerned with the art of cooling brew within the original shipping and storage package, by the circulation of cooling fluid through hollow structures in heat conductive relation with the brew contents.

As conducive to a clear understanding of the invention, it is noted that in the practical operation of brew cooling and dispensing systems of a it would be sufficient, however, to keep the contents of the kegs on reserve at ‘a temperature well above dispensing temperature and yet sufficiently cool to prevent deterioration. An arrangement which would impart such lesser degree of refrigeration to the contents of the kegs on reserve would bring about economy in power consumption and in the capacity of the refrigerating installation when it is attempted to direct the cooling fluid through cooling passages of constant area, the desired economy is not readily attainable because it is the magnitude of the cooling conduit area submerged in the brew which primarily determines the temperature to which the brew is cooled, assuming that an adequate supply of refrigeration is available, as it is in practice.

Viewed from the aspect of the keg structure per se, rather than as a system and method of operation, it is noted that the cooling instrumentalities which engage the contents of brew kegs of the internally cooled type require periodic inspection to assure their operative and sanitary condition.

For convenience and economy, it is therefore an important object so to construct and arrange such coolers as to facilitate removal thereof from the keg structures for such inspection and for repair and re-installation or replacement as the case may be, and that without bling or breaking down the kegs.


Beer In Ads #2013: Cycling To Carlsberg

Thursday’s ad is for Carlsberg, from 1930. In this ad, a trio are riding their bicycles toward the same set of buildings as yesterday’s ad, but they’re having to work a lot harder to get there. The cyclist in the lead is pointing up ahead, presumably to their destination. Or perhaps it’s to the car already there and he’s lamenting their choice of transportation. I wonder if that’s the same car from yesterday’s ad and they’ve been there drinking for hours?


Historic Beer Birthday: Hans Adolf Krebs

Today is the birthday of Hans Adolf Krebs (August 25, 1900-November 22, 1981). He was a German-born British physician and biochemist. He was the pioneer scientist in study of cellular respiration, a biochemical pathway in cells for production of energy. He is best known for his discoveries of two important chemical reactions in the body, namely the urea cycle and the citric acid cycle. The latter, the key sequence of metabolic reactions that produces energy in cells, often eponymously known as the “Krebs cycle,” earned him a Nobel Prize in Physiology or Medicine in 1953. And it’s the Krebs cycle that is his relation to brewing, as it’s also known as the respiratory phase, the second aerobic state of the fermentation process immediately following the lag period.


Here’s a description of the Krebs cycle from Life Fermented:

The Krebs cycle, also known as the tricarboxylic acid (TCA) cycle or the citric acid cycle, is a circular and repeating set of reactions which requires oxygen. In beer making, this would occur in the first stage of fermentation when the yeast is pitched into a well aerated wort, and carries on until all oxygen is used up.
Pyruvate (are you tired of this word yet?) is first converted to acetyl-CoA (pronounced “Co-A”) in the following reaction:

pyruvate + 2 NAD+ + CoA-SH → acetyl-CoA + CO2 + NADH, with the help of the pyruvate dehydrogenase (PDH) complex. Note that this is the first time CO2 is produced, and yet more NADH is generated.

This acetyl-CoA then enters into a cycle of reactions which nets two molecules of CO2, one GTP (guanosine triphosphate, another unit of energy equivalent to ATP), three NADH, and one FADH2 (flavin adenine dinucleotide, which functions similarly to NADH). After the cycle completes, another acetyl-CoA molecule enters and the cycle repeats itself.

But wait, this just made more NADH, and we need to regenerate NAD+ so glycolysis can continue. Both the NADH and FADH2 now donate their electrons to a process called the electron transport chain/ oxidative phosphorylation. The result is a return of NAD to the NAD+ state, and a large amount of ATP cellular energy.

Because the Krebs cycle is so efficient at producing ATP energy units, this is the yeast’s preferred pathway. But, you’ll notice a rather conspicuous absence: ethanol. This is only formed in the absence of oxygen.

NPG x88332; Sir Hans Adolf Krebs

Here’s a biography of Krebs, from the Nobel Prize website:

Sir Hans Adolf Krebs was born at Hildesheim, Germany, on August 25th, 1900. He is the son of Georg Krebs, M.D., an ear, nose, and throat surgeon of that city, and his wife Alma, née Davidson.

Krebs was educated at the Gymnasium Andreanum at Hildesheim and between the years 1918 and 1923 he studied medicine at the Universities of Göttingen, Freiburg-im-Breisgau, and Berlin. After one year at the Third Medical Clinic of the University of Berlin he took, in 1925, his M.D. degree at the University of Hamburg and then spent one year studying chemistry at Berlin. In 1926 he was appointed Assistant to Professor Otto Warburg at the Kaiser Wilhelm Institute for Biology at Berlin-Dahlem, where he remained until 1930.

In I930, he returned to hospital work, first at the Municipal Hospital at Altona under Professor L. Lichtwitz and later at the Medical Clinic of the University of Freiburg-im-Breisgau under Professor S. J. Thannhauser.

In June 1933, the National Socialist Government terminated his appointment and he went, at the invitation of Sir Frederick Gowland Hopkins, to the School of Biochemistry, Cambridge, where he held a Rockefeller Studentship until 1934, when he was appointed Demonstrator of Biochemistry in the University of Cambridge.

In 1935, he was appointed Lecturer in Pharmacology at the University of Sheffield, and in 1938 Lecturer-in-Charge of the Department of Biochemistry then newly founded there.

In 1945 this appointment was raised to that of Professor, and of Director of a Medical Research Council’s research unit established in his Department. In 1954 he was appointed Whitley Professor of Biochemistry in the University of Oxford and the Medical Research Council’s Unit for Research in Cell Metabolism was transferred to Oxford.

Professor Krebs’ researches have been mainly concerned with various aspects of intermediary metabolism. Among the subjects he has studied are the synthesis of urea in the mammalian liver, the synthesis of uric acid and purine bases in birds, the intermediary stages of the oxidation of foodstuffs, the mechanism of the active transport of electrolytes and the relations between cell respiration and the generation of adenosine polyphosphates.

Among his many publications is the remarkable survey of energy transformations in living matter, published in 1957, in collaboration with H. L. Kornberg, which discusses the complex chemical processes which provide living organisms with high-energy phosphate by way of what is known as the Krebs or citric acid cycle.

Krebs was elected a Fellow of the Royal Society of London in 1947. In 1954 the Royal Medal of the Royal Society, and in 1958 the Gold Medal of the Netherlands Society for Physics, Medical Science and Surgery were conferred upon him. He was knighted in 1958. He holds honorary degrees of the Universities of Chicago, Freiburg-im-Breisgau, Paris, Glasgow, London, Sheffield, Leicester, Berlin (Humboldt University), and Jerusalem.

He married Margaret Cicely Fieldhouse, of Wickersley, Yorkshire, in 1938. They have two sons, Paul and John, and one daughter, Helen.

And in the Microbe Wiki, on a page entitled “Saccharomyces cerevisiae use and function in alcohol production,” under a section called “Fermentation of alchohol,” the Krebs cycle is placed in its portion in the fermentation process:

Saccharomyces cerevisiae is able to perform both aerobic and anaerobic respiration. The process begins with the yeast breaking down the different forms of sugar in the wort. The types of sugars typically found in wort are the monosaccharides glucose and fructose. These sugars contain a single hexose, which is composed of 6 carbon atoms in the molecular formula C6H12O6. Disaccharides are formed when two monosaccharides join together. Typical disaccharides in the wort are galactose, sucrose, and maltose. The third type of fermentable sugar in the wort is a trisaccharide. This trisaccharide is formed when three monosccharides join together. Maltotriose is the trisaccharide commonly found in the wort and is composed of three glucose molecules. The wort does contain other sugars such as dextrins but it is not fermentable by yeast10. These dextrins contain four monosaccarides joined together. In order for the yeast to use the disaccharides and trisaccharides they first must be broken down to monosaccharides. The yeast does this by using different enzymes both inside and outside the cell. The enzyme invertase is used to break down sucrose into glucose and fructose. The invertase catalyzes the hydrolysis of the sucrose by breaking the O-C (fructose bond). The other enzyme used is maltase, which breaks down maltose and maltotriose into glucose inside the cell. The enzyme does this by catalyzing the hydrolysis of the sugars by breaking the glycosidic bond holding the glucose molecules together.

Once the sugars are broken down into monosaccharides the yeast can use them. The primary step is called glycolysis. In this process the glucose is converted to pyruvate using different enzymes in a series of chemical modifications. The electrons from glucose end up being transferred to energy carrying molecules like NAD+ to form NADH. ATP is also formed when phosphates are transferred from high-energy intermediates of glycolysis to ADP. In the presence of oxygen aerobic respiration can occur. This occurs in the mitochondria of the yeast. The energy of the pyruvate is extracted when it goes through metabolic processes like the Krebs cycle. The products of this type of metabolism are ATP, H2O, and CO2. However if there is no oxygen present and an abundance of sugars, as in the wort, the yeast undergo alcoholic fermentation. This type of metabolism yields much smaller amounts of energy when compared to aerobic respiration. However, because of the large supply of sugars from the different grains the wort is a very good environment for fermentative growth. The alcoholic fermentation begins with the two pyruvate acquired from glycolysis. These two pyruvate are decarboxylated by pyruvate decarboxylase to form two acetaldehydes and CO2. The CO2 is the gas that is observed during fermentation as bubbles that float to the top of the wort creating the kräusen or beer head, the foam that is very characteristic of a freshly poured beer. Pyruvate decarboxylase is a homotetramer meaning it contains four identical subunits. This also means that is has four active sites. The active sites are where the pyruvate reacts with the cofactors thiamine pyrophosphate (TPP) and magnesium to remove the carbon dioxide9. The final step to form alcohol is the addition of a hydrogen ion to the aldehyde to form ethanol. This hydrogen ion is from the NADH made during glycolysis and converts back to NAD+. The ethanol is originally believed to serve as an antibiotic against other microbes. This form of defense ensures that bacteria do not grow in the wort, thus ruining the beer with off flavors. However recently with the boom of craft beer different bacteria have been purposefully added to create what is known as sour beer. The sour taste comes from the waste products of the bacteria.


To learn more about the Krebs cycle check out this video from the University of Oklahoma’s Chemistry of Beer – Unit 7 – Chemical Concepts: Krebs Cycle:

Patent No. 20110206487A1: Keg Handling Equipment

Today in 2011, US Patent 20110206487 A1 was issued, an invention of Terry George Morgan, for his “Keg Handling Equipment.” Here’s the Abstract:

A keg conveying trolley has a pair of wheels, a central post and a slide which carries a hook for grasping the keg rim. The slide is lockable at different keg heights. A foot plate assists in tipping the trolley to an inclined position for wheeling the keg from one place to another. The keg stacking version has a winch worked by hand or a cordless drill. The keg is supported by a rise and fall carriage. The carriage can be modified to be multitask. Variants can lift gas bottles on their side, truck tires for placing on wheel studs and odd shaped loads.


Historic Beer Birthday: George F. Klotter Jr.

Today is the birthday of George F. Klotter Jr. (August 25, 1835-1900?) His father, along with partner Johann G. Sohn, established the Hamilton Brewery in Cincinnati, Ohio in 1846. Klotter Sr. left that brewery, while Sohn continued alone, and Klotter started another brewery, the George Klotter Brewery in 1866 The following year George Jr., and his brother Louis, joined the brewery, and it was renamed the George Klotter and Sons Brewery, which it remained until 1888.


It 1888, it was renamed the Bellevue Brewery until finally closing in 1919.



Patent No. 154367A: Improvement In Faucets

Today in 1874, US Patent 154367 A was issued, an invention of Lemen J. Birgler, for his “Improvement in Faucets.” There’s no Abstract, although in the description it includes these claims:

My invention relates to a faucet with vent attachment, for drawing of fermented or other liquors from the barrel or keg without the aid of a vent in the bung or other part of the barrel, the vent working automatically in connection with the opening or closing of the faucet, and forming a very convenient, regularly-acting, and independent attachment for keeping the liquids .fresh and nice for any length of time.

The invention consists of a faucet with guide-tube and sliding vent-tube, which is provided at the inner end with a flexible rubber tube and floating valve, and with a second valve at the outer end, through which air is drawn into the barrel when the faucet is opened.


Beer In Ads #2012: Motoring To Carlsberg

Wednesday’s ad is for Carlsberg, from 1930. In this ad, a couple on a motorbike are on the brink of overtaking an automobile, a pair of cyclists, all turning left at the next intersection on their way, apparently, to either the building with Carlsberg Lager on the side, or the one with Carlsberg Pilsner on it. Presumably there’s beer in those buildings.